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We present a model study of the nonadiabatic wave packet dynamics in the presence of a conical intersection.
The wave packet travels essentially along a symmetric coordinate, modeling a photodissociation process,
while it is stationary or makes small amplitude vibrations in the coupling modes. We explore the range of
applicability of a treatment based on classical trajectories plus surface hopping, comparing it with a full
quantum mechanical one. A mixed procedure, classical for the symmetric coordinate and quantum mechanical
for the coupling modes, yields very accurate results and allows for a qualitative interpretation of the dynamics.
We find that the dynamical behavior of a multidimensional conical intersection can be characterized in terms
of a single coupling coordinate, associated with an effective coupling strength parameter.

1. Introduction

The importance of conical intersections in photochemistry,
spectroscopy, and collision dynamics has been widely acknowl-
edged in the last years.1-11 Full quantum mechanical treatments
of nonadiabatic wave packet dynamics in two to four dimensions
(2D-4D) have been performed.4,5,9 With particular forms of
the vibronic Hamiltonian, more modes can be treated;12 in
general, however, when all the coordinates of more than three
atoms are involved, only semiclassical methods13-17 seem to
be viable.
In a previous paper by one of us and other authors,18 a

harmonic (all bound) model of a conical intersection was set
up and the two-dimensional (2D) dynamics was examined by
means of quantummechanical and semiclassical surface hopping
(TSH) methods. In that study, the initial conditions and the
potentials were such that the wave packet went through the
conical intersection traveling along the symmetric coordinate,
X, while it was almost stationary along the antisymmetric (or
coupling) coordinate,Y. We focused our attention on the
transition probabilityPufl, from the upper to the lower adiabatic
surface, after a single crossing of the near degeneracy region
(see Manthe and Ko¨ppel19 and Seidner and Domcke20 for the
study of long-time behaviors). We found that the dynamics
remains sustantially diabatic (Pufl > 0.8 ) in a wide range of
coupling strengths. The semiclassical approach correctly re-
produces the quantum mechanical results only for weak
couplings, whereas it gives lower transition probabilities in the
strong coupling regime. A second paper21 examined a variety
of harmonic models (different relationships between starting and
crossing points and positions of minima along theX coordinate).
In the present work we set up a different model of conical

intersection, which is dissociative along theX coordinate (section
2.A). Conical intersections standing in a dissociation pathway
are found, for instance, in ammonia9 and in the C2H4

+ ion.2 In
order to compare the 2D, 3D, and 4D dynamics, we introduce
1, 2, or 3 coupling coordinates (section 4). Quantum mechan-
ical, semiclassical, and mixed treatments of the wave packet
dynamics are briefly described in sections 2.B-2.D. The 2D
results obtained with a mixed method (section 3) show that,
while it is important to treat quantum mechanically the motion
along the coupling coordinateY, the classical approach is
adequate for theX motion. The effect of different initial

conditions, with some excitation also in theYmode, is examined
in section 3.B. In section 4 we show how the dynamics
computed in higher dimensional cases can be understood and
approximately predicted on the basis of a 2D model.

2. Model and Theory

2.A. Model Hamiltonian. The 2D model is completely
specified by the electronic Hamiltonian matrixH in a diabatic
basis, as a function of the internal coordinatesX andY, plus
the nuclear kinetic energy operatorT̂nuc:

The derivative couplings (matrix elements of∂/∂Q and∂2/∂Q2,
whereQ ≡ X,Y ) vanish in the electronically diabatic basis.
The parameters of the model take on fixed values (in atomic
units):

As a consequence, the frequency for theY oscillator isωy )
0.003 au= 658 cm-1. The only parameter that is varied, in
order to test the influence of the coupling strength, is the factor
γ in the expression ofH12. Diagonalization of theH matrix
yields the adiabatic energiesE1 andE2, with a conical intersec-
tion for X= 6.63,Y) 0 bohr. In Figures 1 and 2 we show the
diabatic and adiabatic potentials, respectively, and in Figure 3
the electronic couplingH12, for γ ) 0.03 au.
The initial conditions correspond to a sudden Franck-Condon

excitation to theH11 surface, from a hypothetical ground state
harmonic surface with a minimum atX ) 3, Y ) 0 bohr, and
force constantsKx ) 0.1,Ky ) 0.09 au. This yields a Gaussian
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H11(X,Y) ) D1e
-R1(X+X1) + 1/2KY

2 (1)

H22(X,Y) ) D2[e
-2R2(X-X2) - 2e-R2(X-X2)] + 1/2KY

2 + ∆

H12(X,Y) ) γYe-â1(X-X3)2e-â2Y2

T̂nuc) - 1
2Mx

∂
2

∂X2
- 1
2My

∂
2

∂Y2
(2)

D1 ) 1, D2 ) 0.015, ∆ ) 0.015, K ) 0.09, (3)

X1 ) 4, X2 ) 3, X3 ) 6,

R1 ) 0.4, R2 ) 1, â1 ) 0.5, â2 ) 1.5,

Mx ) 20 000, My ) 10 000

3454 J. Phys. Chem. A1997,101,3454-3460

S1089-5639(96)03979-5 CCC: $14.00 © 1997 American Chemical Society



wave packet with standard deviations∆X ) 0.11 and∆Y )
0.13 bohr. As the stationaryV ) 0 vibrational state for theY
coordinate is initially populated in theH11 potential, we expect
almost no evolution of the wave packet in theYdirection, until
the coupling region is reached. The wave packet will travel
essentially in theX direction, crossing only once the conical
intersection. In the Frank-Condon region, as well as in the
asymptotic one (X> 9 bohr), the adiabatic and diabatic surfaces
almost coincide, because|H11 - H22| . |H12|. We have run
the quantum mechanical simulations (see below) with slightly
different initial conditions, corresponding to the same Gaussian

wave packet in the upper adiabatic surface, instead of the
diabatic one: the results are almost identical, with a difference
of about 0.01% in the final state probabilities. In section 3.B
we shall discuss the results obtained with different, stationary
or nonstationary,Y-mode wave functions.
2.B. Quantum Mechanical Wave Packet Propagation.

The time-dependent wave function can be written as

where|I,V〉 denotes theVth eigenstate of a harmonic oscillator
for theY coordinate, associated with theIth electronic diabatic
state. In this vibronic basis the molecular Hamiltonian takes
the form

The coincidence of equilibrium points (Y0 ) 0 ) and force
constants (K ) 0.09 au) for the two diabatic surfaces makes
the treatment based on the expansion (4) particularly simple, if
the Y-vibrational basis set is defined with reference to a
harmonic oscillator with the sameY0 andK. Then, the two
blocks of the Hamiltonian belonging to the diabatic states 1
and 2 are diagonal, with

The coupling between the diabatic states is contained in the
interblock matrix elements:

which can be reduced to a closed form making use of the
properties of the Hermite polynomialsHV. Notice that an
arbitrary form of the potentialsHII and of the couplingH12 could
be treated with a modest increase in the complexity of the
algorithm (see for instance Cimiragliaet al.22).
The diagonal terms of the vibronic HamiltonianH(V) are

effective potentials for the nuclear motion in theX coordinate:
they are shown in Figure 4. They undergo a set of crossings
approximately at the sameX of the conical intersection. The
|I,V〉 basis is diabatic, in the sense that it is independent ofX
and the matrix elements〈I,V|∂/∂X|J,V′〉 vanish. Diagonalization
of theH(V) matrix yields vibronic adiabatic energies, whereby
some of the crossings become avoided.

Figure 1. Diabatic potentialsHII for the 2D model. Energies and
distances in au. The cross marks the center of the initial wave packet.

Figure 2. Adiabatic potentialsEK for the 2D model, with coupling
factorγ ) 0.03 au. Energies and distances in au. The cross marks the
center of the initial wave packet. The arrow indicates the position of
the conical intersection.

Figure 3. Electronic coupling matrix element between diabatic states,
H12, for the 2D model, with coupling factorγ ) 0.03 au. Energies and
distances in au.
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The multistate nonadiabatic propagation of theêI,V wave
packets has been computed by the split-operator fast Fourier
transform method, as implemented by Broeckhoveet al.23 in
the TEMPO package. The population of the vibronic state|I,V〉
is PI,V

(Q,M) ) ∫|êI,V|2(X) dX; the total probability for the elec-
tronic stateI is PI

(QM) ) ∑VPI,V
(Q,M).

2.C. Mixed Quantal-Semiclassical Treatment Based on
the Vibronic Model. The time-evolution problem defined by
theX-dependentH(V) Hamiltonian can be treated in a semiclas-
sical way: we shall call this approach the vibronic model (VM)
of the dynamics (see also Ferrettiet al.18,21). In the VM, the
classical equations of motion are applied to theX coordinate,
while the time-dependent Schro¨dinger equation is solved for
the vibronic wave function:

The coefficientsCI,V(t) obey a set of coupled equations:

TheX(t) trajectory, for simplicity, has been considered to depend
only on the initial diabatic potential,H1,0(X), although a surface-
hopping algorithm might be applied to the VM as to the
completely semiclassical calculations (see section 2.C). A very
accurate solution of the coupled equations (9) can be easily
obtained by numerical integration. The square modules of the
coefficients are the populations of the vibronic states:
PI,V
(VM) ) |CI,V|2; for the electronic states,PI

(VM) ) ∑VPI,V
(VM).

For a sake of simplicity and of a better qualitative under-
standing, one can apply the Landau-Zener rule to the avoided
crossings between theHIV,IV

(V) (X) curves, instead of solving
directly the coupled equations. For a crossing between states
|I,V〉 and |J,V′〉, the transition probability is

whereẊ is the velocity andFx the slope difference between the
HIV,IV
(V) andHJV′,JV′

(V) potentials; all quantities are evaluated at the

crossing point. Notice that, becauseH12 is an odd function of
Y, only transitions between states withV andV′ of different parity
are allowed (with bothV andV′ even or odd,HIV,JV′

(V) ) 0). This
shows that, starting withV ) 0 in the electronic state 1, the
final wave packets will be an even function ofY in the same
electronic state and an odd one in state 2. The final probabilities
PI,V
(VM-LZ) of the vibronic states are obtained by applying eq 10

sequentially to all the avoided crossings, within a branching
scheme: this will be denoted as the Landau-Zener solution of
the vibronic model (VM-LZ). Once more, total electronic
probabilities are derived by summing up the vibronic ones:
PI
(VM-LZ) ) ∑VPI,V

(VM-LZ).
A further approximation consists in assuming a linear

(nondamped) form for the coupling function, i.e.H12 ) γY;
this may be valid within the initial width of the wave packet
(see Figure 3). Then, starting in the|1,0〉 state, only two
crossings are effective in causing transitions: the first one
between|1,0〉 and|2,0〉, the second between|2,1〉 and|1,2〉. The
H1V,2V′
(V) matrix elements take on very simple forms,18 so that the

final probability of being in the diabatic state 1, i.e. the adiabatic
transition probabilityPufl, is a function of a single parameter
λ:

with

∆Y) (2Myωy)-1/2 is the width of the wave packet. In terms of
the adiabatic potentials,γ is the slope of the sides of the double
cone along theY direction: the analogous parameter for theX
coordinate isFx/2. Equations 11 and 12 embody what we shall
call the simplified Landau-Zener solution of the vibronic model
(VM-SLZ). The VM-SLZ results are accurate in a restricted
range ofγ values (weak coupling), otherwise they are only
qualitatively correct, as we shall see in section 3. However,
the parameterλ is a good measure of the effective coupling in
a much wider range of situations, and it turns out very useful
in comparing different conical intersections: we shall express
all our results as functions ofλ.
2.D. Semiclassical Dynamics: Trajectories plus Surface

Hopping. The treatment based on classical trajectories for the
nuclear motion and surface hopping to represent electronically
nonadiabatic transitions has already been described.18 We shall
give here a brief outline of the algorithm. The time-dependent
wave function is expressed as

HereγK(t) ) ∫0tEK(Q) dt and the|ψK〉 are the adiabatic states:

with eigenvectorsCK obtained by diagonalization of theH
matrix. The Schro¨dinger equation for the electrons gives place
to a set of coupled equations:

where

Figure 4. Dashed lines: potential energy curves for the vibronic states
|I,V〉 (I ≡ electronic diabatic state;V ≡ vibrational quantum number
for the coupling modeY ). Full lines: corresponding eigenvalues
(adiabatic potentials). Only one manifold of interacting states is
shown: evenV for I ) 1 and oddV for I ) 2.
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The electronic Hamiltonian matrixH, its eigenvectorsCK, and
its eigenvaluesEK are functions of time through the nuclear
coordinates (Q ≡ X,Y in our model); therefore the integration
of eq 15 depends on the trajectory. The classical equations of
motion are integrated29 for a given potential energy surfaceEK,
and we make use of Tully’s fewest switches algorithm13,14 to
introduce surface hoppings to other surfaces, according to
changes in the state probabilities|AI(t)|2. Notice that, within
purely quantum mechanical methods, switching from the
diabatic to the adiabatic representation is in principle a mere
change of basis set, without influence on the computational
results; on the contrary, the classical trajectories depend on the
definition of the potential, and, according to our experience,
the adiabatic surfaces give better results.24

We ran a batch of 1000 trajectories with a statistical sampling
of initial conditions for each value of the model parameters.
The purpose is 2-fold. First, we want to reproduce, as best as
possible, the quantum mechanical initial distribution of coor-
dinates and velocities: this is done by sampling independently
the four variablesX, Ẋ, Y, andẎ, according to the appropriate
Gaussian distributions. The second purpose is to allow for a
statistically significant number of random choices in the surface-
hopping algorithm. The final probabilityPK

(TSH) for the elec-
tronic stateK is computed as an average of|AK|2 over all
trajectories.

3. Results of 2D Calculations

3.A. Stationary (W ) 0) Initial Wave Packet in the
Coupling Mode. We present first the results of simulations
starting with a Gaussian 2D wave packet, which corresponds
to the|1,0〉 vibronic state, as already described in section 2.A.
In Figure 5 we show the final probability for the diabatic state
1, i.e. the transition probabilityPufl from the upper to the lower
adiabatic state, obtained for a set of different values of the
parameterγ. Actually, we put on the horizontal axis the
effective coupling strengthλ, which has a more universal
meaning thanγ; in our model,λ ) 8311γ2.
The quantum mechanical transition probability,P1

(QM)(λ),
has a minimum value of 0.74 forλ = 1; the probability goes
up to 0.80-0.90 for stronger couplings. The reason for this
behavior is clear if one considers the VM-LZ model, or the

simplified version, VM-SLZ, which gives qualitatively correct
results. For weak couplings all the avoided crossings are close
to the diabatic limit, therefore the system will remain in the
initial state,|1,0〉. For strong couplings, the system jumps from
|1,0〉 to |2,V〉 (mainly V ) 1, but also higher odd numbers) with
a high probability, when the corresponding potentials cross; then,
another crossing with the state|1,V+1〉 causes a second
transition, which returns to the initial diabatic electronic surface.
For intermediate couplings there is a rather large probability of
switching only once the electronic state, from 1 to 2, whence
the minimum inPufl(λ).
The VM results obtained by numerical integration of eq 9

are in excellent agreement with the full quantum mechanical
ones. This shows that a classical treatment of large amplitude
symmetric modes can be accurate and very effective in reducing
the computational burden. The VM-LZ and VM-SLZ solutions
deviate from the exact one for moderate to large values of the
coupling parameterλ. In fact, the application of the Landau-
Zener rule to a multicrossing problem is safe only if the avoided
crossing regions do not overlap, which is true in the weak
coupling limit. The TSH results also agree with the quantum
mechanical ones up toλ ) 1; for larger couplings the
semiclassical transition probability is too low. From the
comparison of the QM, VM, and TSH results we can conclude
that it is important to treat quantum mechanically the motion
along the antisymmetric coupling coordinateY. A discussion
of this point was already given in Ferrettiet al.;18 we add now
the conclusive support of the comparison between full QM, VM
(X mode treated classically), and TSH results (bothX andY
treated classically).
3.B. Vibrational Excitation of the Initial Wave Packet

in the Coupling Mode. One may suspect that the partial failure
of the semiclassical algorithm is connected with the particular
initial wave packet we have chosen, i.e. the eigenfunctionV )
0 in the antisymmetric coordinateY. With higher V, the
ambiguities and shortcomings connected with the classical
representation of the zero-point vibration should become less
important. Therefore, we have run three sets of calculations
with different initial conditions. In the first set, A, instead of
V ) 0 in theYmode, we chooseV ) 1. In the second and third
cases, B and C, we have nonstationary wave packets, with the
same energy as in A. The initial wave packet B is theV ) 0
eigenfunction, but centered atY) (2p/Myωy)1/2. In case C we
have again the same Gaussian, centered atY) 0, but multiplied

Figure 5. Transition probability from the upper to the lower adiabatic surface,Pufl, for the 2D model, with the initial wave packet corresponding
to theV ) 0 eigenfunction for the coupling modeY.

GKL
(R) ) (EK - EL)

-1CK
† ∂H
∂QR

CL (16)

Wave Packet Dynamics J. Phys. Chem. A, Vol. 101, No. 19, 19973457



by a factor exp(ipjyY/p), that is, with an average momentumpjy
) (2Mypωy)1/2. In practice, B and C are two wave packets
oscillating in theY direction with the same amplitude and
different phases. The trajectories of their centers in theX,Y
plane differ as to the direction of the approach to, and the
minimum distance from, the conical intersection. In all three
cases, A, B and C, however, the initial wave packet has the
same total energy.
We have run QM, VM, and TSH simulations. In case A,

the VM-LZ approximation is also viable. In the full QM and
in the VM treatments the initial conditions B and C are specified
by the corresponding superposition of|1,V〉 states. In the TSH

procedure, we sample the initial coordinates and velocities so
as to reproduce the wanted quantal distributions. The transition
probabilitiesPufl are shown in Figures 6-8. They are generally
lower than those obtained when starting withV ) 0: qualita-
tively, hitting the conical intersection centrally and with the most
concentrated wave packet yields the most diabatic behavior. In
all cases the VM results are quite close to the QM ones. The
agreement of TSH with QM improves in all cases A, B and C,
with respect to what was found in the previous section. Overall,
we take these results as an indication that the stationaryV ) 0
initial conditions are probably the most severe benchmark for
TSH calculations, and generally better performances of this
method can be expected in different situations.

4. Results of 3D and 4D Calculations

Three- and four-dimensional models were set up, in order to
ascertain the cooperative or competitive effects of two or three
coupling coordinates. The model electronic Hamiltonian
H(X,Y1...YN), with N) 2 or 3, is quite analogous to the 2D one
presented in section 2:

All the parameters are the same as before, includingK1 ) K )
0.09 au, with the addition ofK2 ) 0.10 au andK3 ) 0.1125 au.
The reduced massesMR for theYR coordinates are 10 000, 9000,
and 8000 au, respectively. These values were chosen so as to
obtain slightly different vibrational frequencies (ωR ) 658, 732,
and 823 cm-1, respectively) for the coupling modes, without
altering the widths∆YR ) (2MRωR)-1/2 which appear in the

Figure 6. Transition probability from the upper to the lower adiabatic
surface,Pufl, for the 2D model, with the initial wave packet corre-
sponding to theV ) 1 eigenfunction for the coupling modeY (case A,
section 3.B).

Figure 7. Transition probability from the upper to the lower adiabatic
surface,Pufl, for the 2D model. The initial Gaussian wave packet is
displaced along theY coordinate (case B, section 3.B).

Figure 8. Transition probability from the upper to the lower adiabatic
surface,Pufl, for the 2D model. The initial Gaussian wave packet is
endowed with a non vanishing average momentum along theY
coordinate (case C, section 3.B).

H11 ) D1e
-R1(X+X1) + ∑
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N 1

2
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2 (17)

H22 ) D2[e
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R

N 1

2
KRYR

2 + ∆

H12 ) ∑
R

N

γRYRe
-â1(X-X3)2e-â2YR

2
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definition of the λ parameter. The QM, VM, and VM-LZ
treatments are as described in section 2, except that the wave
function expansions (4) and (8) are made on two- or three-mode
vibrational bases, therefore with two or three quantum numbers
VR.
The γR factors are varied in order to investigate different

coupling schemes. In the 3D-e model, we have two coupling
coordinates withγ1 ) γ2. In the 3D-u model, the two couplings
are different,γ1 ) 2γ2. Similarly, the 4D-e and 4D-u models
are characterized by three couplings, respectivelyγ1 ) γ2 )
γ3 and γ1 ) 2γ2 ) 2γ3. The results of the simulations, all
expressed as functions ofλ1 ) 2π∆Y2γ12/ẊFx, are shown in
Figures 9-11. For the 3D-e model we have also run full QM
calculations and found that the VM results are again very good
approximations of the exact ones. Therefore, for the other cases,
only the VM results are given. Notice that, on the contrary,
the Landau-Zener approximate solution breaks down in the
3D and 4D cases, because of the presence of very close lying
avoided crossings. The TSH results show the same trends as
in the 2D case.

Generally speaking, summing up more couplings increases
the overall effect, in the sense that thePufl(λ1) functions are
displaced toward lowerλ values. This effect increases in the
order 3D-u< 4D-u< 3D-e< 4D-e. A better analysis of these
findings can be done by identifying two special coordinates for
each conical intersection:25 one coincides with the gradient of
H11-H22; the other one with that ofH12. In our models, the
former coordinate is alwaysX; the latter (the coupling coordi-
nate) is

Starting from an intersection point, a displacement in any
directionZ, orthogonal to these two coordinates, leaves theH
matrix unchanged, except for a common shift of the diagonal
matrix elements. Therefore, theZ coordinates do not couple
the diabatic states, nor the adiabatic ones. We shall characterize
a conical intersection by the coupling factor related with theYc
coordinate:

The width of the wave packet in theYc dimension is

(that is, because with our choice of the parameters all∆YR are
equal,∆Yc ) ∆YR). Then, an effective coupling strength can
be defined as

In Figure 12 we show theP(VM) probabilities for all the 2D,
3D, and 4D models, as functions ofλe. All the curves follow
the same trend, and the quantitative agreement is good up to
rather strong couplings. This means that the wave packet
dynamics in the presence of a multidimensional conical
intersection can be analyzed in terms of a single coupling

Figure 9. Transition probability from the upper to the lower adiabatic
surface,Pufl, for the 3D model with two equal couplings (3D-e),λ1 )
λ2.

Figure 10. Transition probability from the upper to the lower adiabatic
surface,Pufl, for the 3D model with two unequal couplings (3D-u),λ1
) 4λ2.

Figure 11. Transition probability from the upper to the lower adiabatic
surface,Pufl, for the 4D models with three equal couplingsλ1 ) λ2 )
λ3 (4D-e), and with three unequal couplingsλ1 ) 4λ2 ) 4λ3 (4D-u).
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coordinate, and the essential information is contained in the
effective coupling parameterλe. Notice that a reduction of the
Jahn-Teller problem from multimode to one-mode was already
achieved by Cederbaumet al.,26,27 in the same spirit as the
preceding discussion.

5. Conclusions
We have set up a model of a conical intersection and studied

the dynamics of a wave packet that travels along a symmetric
coordinate and is stationary, or makes small amplitude oscil-
lations, along the coupling coordinates. The expansion of the
wave packet in a basis of vibrational eigenfunctions for the
coupling modes allows one to understand at least qualitatively
the variation of the transition probability from the upper to the
lower electronic hypersurface as a function of the coupling
strength. A single effective coupling parameter can be defined
for each physical situation, even in the presence of more than
one coupling coordinate, in analogy with the Massey parameter
for avoided crossings:28 this is a first step toward a classification
of multidimensional conical intersections in terms of their
dynamical properties. The determination of potential energy
surfaces and couplings lies within the scope of electronic
structure calculations. The connection with experimental results
needs accurate treatments of the vibronic dynamics. However,
our model indicates what can be qualitatively expected in typical
situations: namely, strong vibrational excitation in the anti-
symmetric modes of the products, when large electronic
couplings give place to conical intersections with steep sides.
Classical trajectories plus surface hopping correctly reproduce

the quantum mechanical results for weak couplings, but larger
deviations are found in the strong coupling regime. Better
results are obtained when the initial wave packet contains some
vibrational excitation in the coupling mode. As already
discussed in a previous paper,18 there are strong indications that
the semiclassical treatment of transitions induced by the motion
along the antisymmetric coordinate is flawed, at least for a zero-
point vibrational wave function. Therefore we have tested a
mixed treatment, classical for the symmetric coordinate and
quantum mechanical for the coupling modes: the results are in
very good agreement with the full quantum mechanical ones,
with a much reduced computational effort.
Future work should extend this investigation to different

geometries of approach of the wave packet to the conical
intersection, including for instance a large amplitude motion
along the antisymmetric coordinate.
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Figure 12. Transition probability from the upper to the lower adiabatic surface,Pufl, versus the effective coupling parameterλe. VM results for
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