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Wave Packet Dynamics in the Presence of a Conical Intersection
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We present a model study of the nonadiabatic wave packet dynamics in the presence of a conical intersection.
The wave packet travels essentially along a symmetric coordinate, modeling a photodissociation process,
while it is stationary or makes small amplitude vibrations in the coupling modes. We explore the range of
applicability of a treatment based on classical trajectories plus surface hopping, comparing it with a full
guantum mechanical one. A mixed procedure, classical for the symmetric coordinate and quantum mechanical
for the coupling modes, yields very accurate results and allows for a qualitative interpretation of the dynamics.
We find that the dynamical behavior of a multidimensional conical intersection can be characterized in terms
of a single coupling coordinate, associated with an effective coupling strength parameter.

1. Introduction conditions, with some excitation also in tifenode, is examined

in section 3.B. In section 4 we show how the dynamics
computed in higher dimensional cases can be understood and
approximately predicted on the basis of a 2D model.

The importance of conical intersections in photochemistry,
spectroscopy, and collision dynamics has been widely acknowl-
edged in the last yeats!! Full quantum mechanical treatments
of nonadiabatic wave packet dynamics in two to four dimensions
(2D—4D) have been performéd.® With particular forms of 2. Model and Theory
the vibronic Hamiltonian, more modes can be tredfeih 2.A. Model Hamiltonian. The 2D model is completely
general, however, when all the coordinates of more than threespecified by the electronic Hamiltonian matiikin a diabatic
atoms are involved, only semiclassical metHéds seem to basis, as a function of the internal coordinaxeandY, plus

be viable. the nuclear kinetic energy operafby,c
In a previous paper by one of us and other auth®rs, VAV )
harmonic (all bound) model of a conical intersection was set H1,(X)Y) = Dye "7 + 1KY 1)

up and the two-dimensional (2D) dynamics was examined by

means of quantum mechanical and semiclassical surface hopping H,,(X,Y) = D2[672“2(X7X2) — 2e @l 4 1/2KY2 + A
(TSH) methods. In that study, the initial conditions and the

potentials were such that the wave packet went through the H,,(X,Y) = yYe PxX’g V"

conical intersection traveling along the symmetric coordinate,

X, while it was almost stationary along the antisymmetric (or N

coupling) coordinate)Y. We focused our attention on the Thue™= _N&_NB_YZ @)
transition probabilityP,—, from the upper to the lower adiabatic X y

surface, after a single crossing of the near degeneracy regionthe derivative couplings (matrix elementsa#Q and 92/9Q2,
(see Manthe and Kapel® and Seidner and Domck&for the whereQ = X,Y ) vanish in the electronically diabatic basis.

study of long-time behaviors). We found that the dynamics The parameters of the model take on fixed values (in atomic
remains sustantially diabati®¢- > 0.8 ) in a wide range of  pits):

coupling strengths. The semiclassical approach correctly re-

produces the quantum mechanical results only for weak D,=1, D,=0.015, A=0.015, K=0.09, (3)
couplings, whereas it gives lower transition probabilities in the
strong coupling regime. A second papezxamined a variety X, =4, X,=3, X3=6,

of harmonic models (different relationships between starting and
crossing points and positions of minima along ¥eoordinate).

In the present work we set up a different model of conical
intersection, which is dissociative along tkeoordinate (section M, =20 000, M,= 10000
2.A). Conical intersections standing in a dissociation pathway
are found, for instance, in ammofiand in the GH;" ion.2 In
order to compare the 2D, 3D, and 4D dynamics, we introduce ; ! .
1, 2, or 3 coupling coordinates (section 4). Quantum mechan- order to test the influence of the coupling strength, is the factor

ical, semiclassical, and mixed treatments of the wave packet?. I the expression oH,,. Diagonalization of thed matrix
dynamics are briefly described in sections 28D. The 2D yields the adiabatic energi&s andE,, with a conical intersec-

results obtained with a mixed method (section 3) show that, fion for X =6.63,Y = 0 bohr. In Figures 1 and 2 we show the
while it is important to treat quantum mechanically the motion diabatic and adiabatic potentials, respectively, and in Figure 3

along the coupling coordinat¥, the classical approach is (€ electronic couplingds,, for y = 0.03 au.
adequate for theX motion. The effect of different initial The initial conditions correspond to a sudden FrarnClndon

excitation to theH;; surface, from a hypothetical ground state
* E-mail: mau@hermes.dcci.unipi.it. harmonic surface with a minimum 2= 3,Y=0 bohr, anq
® Abstract published irdvance ACS Abstractdpril 15, 1997. force constant&, = 0.1,K, = 0.09 au. This yields a Gaussian

o, =04, a,=1, B,=05, p,=15,

As a consequence, the frequency for thescillator iswy =
0.003 au= 658 cnT!. The only parameter that is varied, in
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Figure 1. Diabatic potentialsH, for the 2D model. Energies and

distances in au. The cross marks the center of the initial wave packet.
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Figure 2. Adiabatic potential€Ex for the 2D model, with coupling

factory = 0.03 au. Energies and distances in au. The cross marks the
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Figure 3. Electronic coupling matrix element between diabatic states,
Hio, for the 2D model, with coupling factgr = 0.03 au. Energies and
distances in au.

wave packet in the upper adiabatic surface, instead of the
diabatic one: the results are almost identical, with a difference
of about 0.01% in the final state probabilities. In section 3.B
we shall discuss the results obtained with different, stationary
or nonstationaryY-mode wave functions.

2.B. Quantum Mechanical Wave Packet Propagation.
The time-dependent wave function can be written as

2 VUmax

P(O= Z ) XDl (4)

where|l,v0denotes theth eigenstate of a harmonic oscillator
for the Y coordinate, associated with thtt electronic diabatic
state. In this vibronic basis the molecular Hamiltonian takes
the form

I,0lA 13,0'C= HY),(X) — 6,0

82
e O

1
vv’2M
The coincidence of equilibrium pointsyd{ = 0 ) and force
constants K = 0.09 au) for the two diabatic surfaces makes
the treatment based on the expansion (4) particularly simple, if
the Y-vibrational basis set is defined with reference to a
harmonic oscillator with the sam& and K. Then, the two

blocks of the Hamiltonian belonging to the diabatic states 1
and 2 are diagonal, with

H V)

lo,lv

() = Hy (X,0) + ha(v + 1/2) (6)

The coupling between the diabatic states is contained in the
interblock matrix elements:

Qw|H 12,0/ 0= HY,,(X) =
j::oHU(Myllzwylle)Hy' (Myllzwylle) e—Mywy\ﬁle(x,Y) dy
(7)

center of the initial wave packet. The arrow indicates the position of which can be reduced to a closed form making use of the

the conical intersection.

wave packet with standard deviations = 0.11 andAY =
0.13 bohr. As the stationary = 0 vibrational state for the
coordinate is initially populated in thd;; potential, we expect
almost no evolution of the wave packet in thiéirection, until
the coupling region is reached. The wave packet will travel
essentially in theX direction, crossing only once the conical
intersection. In the FrankCondon region, as well as in the
asymptotic oneX > 9 bohr), the adiabatic and diabatic surfaces
almost coincide, becaugkli; — Hz > |His. We have run

properties of the Hermite polynomiald,. Notice that an
arbitrary form of the potentiald; and of the couplindd;» could

be treated with a modest increase in the complexity of the
algorithm (see for instance Cimiraglat al.2?).

The diagonal terms of the vibronic Hamiltoniah) are
effective potentials for the nuclear motion in tRecoordinate:
they are shown in Figure 4. They undergo a set of crossings
approximately at the sam¥ of the conical intersection. The
|l,vObasis is diabatic, in the sense that it is independen of
and the matrix element8,»|08/0X|J,v'[vanish. Diagonalization

the quantum mechanical simulations (see below) with slightly of the HV) matrix yields vibronic adiabatic energies, whereby
different initial conditions, corresponding to the same Gaussian some of the crossings become avoided.
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Figure 4. Dashed lines: potential energy curves for the vibronic states
[l,vO(l = electronic diabatic state; = vibrational quantum number
for the coupling modeY ). Full lines: corresponding eigenvalues
(adiabatic potentials). Only one manifold of interacting states is
shown: everv for | = 1 and oddv for | = 2.

The multistate nonadiabatic propagation of the wave
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crossing point. Notice that, becaude; is an odd function of

Y, only transitions between states witlandy' of different parity

are allowed (with bothy and’ even or oddH{",, = 0). This
shows that, starting witlv = 0 in the electronic state 1, the
final wave packets will be an even function ¥fin the same
electronic state and an odd one in state 2. The final probabilities
PM~2 of the vibronic states are obtained by applying eq 10
sequentially to all the avoided crossings, within a branching
scheme: this will be denoted as the Landa@ner solution of

the vibronic model (VM-LZ). Once more, total electronic

probabilities are derived by summing up the vibronic ones:
P(VM—LZ) =3 P(VM -L2)
| vh

A further abproximation consists in assuming a linear
(nondamped) form for the coupling function, i, = Y,
this may be valid within the initial width of the wave packet
(see Figure 3). Then, starting in tH&,00state, only two
crossings are effective in causing transitions: the first one
between1,00and|2,00the second betwedf,1and|1,2L] The
H{,, matrix elements take on very simple fordiso that the
final probability of being in the diabatic state 1, i.e. the adiabatic
transition probabilityP,—, is a function of a single parameter
A

packets has been computed by the split-operator fast Fourier

transform method, as implemented by Broeckhetel.?3 in
the TEMPO package. The population of the vibronic stgié]

is PQ™ = 1&,/2(X) dX; the total probability for the elec-
tronic statel is PO") = 5 P%M,

2.C. Mixed Quantal—Semiclassical Treatment Based on
the Vibronic Model. The time-evolution problem defined by
the X-dependenH®) Hamiltonian can be treated in a semiclas-
sical way: we shall call this approach the vibronic model (VM)
of the dynamics (see also Ferratti all82). In the VM, the
classical equations of motion are applied to ¥eoordinate,
while the time-dependent Scldioger equation is solved for
the vibronic wave function:

2 VYmax

|D(t) = Z > G020 ®)

The coefficientsC, ,(t) obey a set of coupled equations:

C__ %H(V)(X(t))c(t)

ot 9)

TheX(t) trajectory, for simplicity, has been considered to depend
only on the initial diabatic potentia o(X), although a surface-
hopping algorithm might be applied to the VM as to the

completely semiclassical calculations (see section 2.C). A very
accurate solution of the coupled equations (9) can be easily
obtained by numerical integration. The square modules of the

coefficients are the populations of the vibronic states:
PYM = |C, |2 for the electronic state®{"™™ = 5 ,PIM.

l,v v
For a sake of simplicity and of a better qualitative under-
standing, one can apply the LandaZener rule to the avoided

crossings between thH(V)l,(X) curves, instead of solving

lo,le

Py =PM S =1-e?+e® (11)
with
2, 2
1= M (12)

XF

X

AY = (2Mywy)~2is the width of the wave packet. In terms of
the adiabatic potentialg,is the slope of the sides of the double
cone along the direction: the analogous parameter for the
coordinate ig=/2. Equations 11 and 12 embody what we shall
call the simplified LandattZener solution of the vibronic model
(VM-SLZ). The VM-SLZ results are accurate in a restricted
range ofy values (weak coupling), otherwise they are only
qualitatively correct, as we shall see in section 3. However,
the parametet is a good measure of the effective coupling in
a much wider range of situations, and it turns out very useful
in comparing different conical intersections: we shall express
all our results as functions df.

2.D. Semiclassical Dynamics: Trajectories plus Surface
Hopping. The treatment based on classical trajectories for the
nuclear motion and surface hopping to represent electronically
nonadiabatic transitions has already been desctibatle shall
give here a brief outline of the algorithm. The time-dependent
wave function is expressed as

(0= ZAK(t)e*‘VK“)wK(Q)D (13)

Hereyk(t) = [tEx(Q) dt and the|yare the adiabatic states:

[ O= ZC.KHD (14)

directly the coupled equations. For a crossing between stategWith eigenvectorsCy obtained by diagonalization of thi

[l,vOand |J,v'C] the transition probability is

27(H,,)°

XF (10)

P(l,v—JV)=1—exg—

X
whereX is the velocity and, the slope difference between the
H) and HSX?YJU, potentials; all quantities are evaluated at the

lv,lv

matrix. The Schidinger equation for the electrons gives place
to a set of coupled equations:

0

Ac . .
o 2ADETY SR ay)

where
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Figure 5. Transition probability from the upper to the lower adiabatic surf&ge,, for the 2D model, with the initial wave packet corresponding
to thev = 0 eigenfunction for the coupling modé

1+ 0H
KaQa L

The electronic Hamiltonian matrild, its eigenvector€y, and

simplified version, VM-SLZ, which gives qualitatively correct
results. For weak couplings all the avoided crossings are close
to the diabatic limit, therefore the system will remain in the
initial state,|1,00] For strong couplings, the system jumps from
its eigenvaluessk are functions of time through the nuclear |1,00to |2p00(mainly » = 1, but also higher odd numbers) with
coordinates@ = X,Y in our model); therefore the integration @ high probability, when the corresponding potentials cross; then,
of eq 15 depends on the trajectory. The classical equations ofanother crossing with the statd,»+10 causes a second

G = (Ex —E)'C (16)

motion are integratéffor a given potential energy surfaég,
and we make use of Tully’s fewest switches algorithi to

transition, which returns to the initial diabatic electronic surface.
For intermediate couplings there is a rather large probability of

introduce surface hoppings to other surfaces, according toswitching only once the electronic state, from 1 to 2, whence

changes in the state probabilitie%(t)|2. Notice that, within
purely quantum mechanical methods, switching from the

the minimum inPy—(A).
The VM results obtained by numerical integration of eq 9

diabatic to the adiabatic representation is in principle a mere are in excellent agreement with the full quantum mechanical
change of basis set, without influence on the computational ones. This shows that a classical treatment of large amplitude
results; on the contrary, the classical trajectories depend on thesymmetric modes can be accurate and very effective in reducing
definition of the potential, and, according to our experience, the computational burden. The VM-LZ and VM-SLZ solutions
the adiabatic surfaces give better restfts. deviate from the exact one for moderate to large values of the
We ran a batch of 1000 trajectories with a statistical Sampling Coup”ng paramete{'_ In fact’ the app”cation of the Landau
of initial conditions for each value of the model parameters. Zzener rule to a multicrossing problem is safe only if the avoided
The purpose is 2-fold. First, we want to reproduce, as best ascrossing regions do not overlap, which is true in the weak
dinates and velocities: this is done by sampling independently mechanical ones up td = 1; for larger couplings the
the four variablesx, X, Y, andY, according to the appropriate  semijclassical transition probability is too low. From the
Gaussian distributions. The second purpose is to allow for a comparison of the QM, VM, and TSH results we can conclude
statistically significant number of random choices in the surface- that it is important to treat quantum mechanically the motion
hopping algorithm. The final probabilitp{ °" for the elec-  along the antisymmetric coupling coordinate A discussion
tronic stateK is computed as an average [#«|* over all of this point was already given in Ferreti al ;8 we add now
trajectories. the conclusive support of the comparison between full QM, VM
(X mode treated classically), and TSH results (b¥thnd Y

3. Results of 2D Calculations treated classically).

3.A. Stationary (v 0) Initial Wave Packet in the 3.B. Vibrational Excitation of the Initial Wave Packet
Coupling Mode. We present first the results of simulations in the Coupling Mode. One may suspect that the partial failure
starting with a Gaussian 2D wave packet, which corresponds of the semiclassical algorithm is connected with the particular
to the|1,00vibronic state, as already described in section 2.A. initial wave packet we have chosen, i.e. the eigenfunctien
In Figure 5 we show the final probability for the diabatic state 0 in the antisymmetric coordinat¥. With higher v, the
1, i.e. the transition probabilit,— from the upper to the lower  ambiguities and shortcomings connected with the classical
adiabatic state, obtained for a set of different values of the representation of the zero-point vibration should become less
parametery. Actually, we put on the horizontal axis the important. Therefore, we have run three sets of calculations
effective coupling strengttk, which has a more universal with different initial conditions. In the first set, A, instead of
meaning thary; in our model,A = 83112 v = 0in theY mode, we choose= 1. In the second and third

The quantum mechanical transition probabilil?(lQM)(/l), cases, B and C, we have nonstationary wave packets, with the
has a minimum value of 0.74 far = 1; the probability goes  same energy as in A. The initial wave packet B is the 0
up to 0.86-0.90 for stronger couplings. The reason for this eigenfunction, but centered ¥t= (2fi/Myw,)Y2 In case C we
behavior is clear if one considers the VM-LZ model, or the have again the same Gaussian, center&d=a0, but multiplied
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Figure 6. Transition probability from the upper to the lower adiabatic Figure 8. Transition probability from the upper to the lower adiabatic
surface,P,;, for the 2D model, with the initial wave packet corre- surface,P.;, for the 2D model. The initial Gaussian wave packet is
sponding to thes = 1 eigenfunction for the coupling modé(case A, endowed with a non vanishing average momentum along tthe
section 3.B). coordinate (case C, section 3.B).

procedure, we sample the initial coordinates and velocities so
as to reproduce the wanted quantal distributions. The transition
probabilitiesP,—, are shown in Figures-68. They are generally
lower than those obtained when starting witk= 0: qualita-
tively, hitting the conical intersection centrally and with the most
concentrated wave packet yields the most diabatic behavior. In
all cases the VM results are quite close to the QM ones. The
agreement of TSH with QM improves in all cases A, B and C,
with respect to what was found in the previous section. Overall,
we take these results as an indication that the statiomary0
initial conditions are probably the most severe benchmark for
TSH calculations, and generally better performances of this
method can be expected in different situations.

transition probability

4. Results of 3D and 4D Calculations

Three- and four-dimensional models were set up, in order to
ascertain the cooperative or competitive effects of two or three
coupling coordinates. The model electronic Hamiltonian
H(X,Y1...Yn), with N = 2 or 3, is quite analogous to the 2D one
0.55 1= 1 presented in section 2:

0.6

0.5 1 1 1 1 1

N
1
0 1 2 -
coupling s?:;rength‘,l A 5 6 Hll = Dle oo + ZEKuYaZ (17)

a

Figure 7. Transition probability from the upper to the lower adiabatic

surface,P,—;, for the 2D model. The initial Gaussian wave packet is N 1
displaced along th¥ coordinate (case B, section 3.B). H,,= Dz[e*Zaz(X*Xz) - Ze*az(xfxz)] + ZEKGY&Z + A
o

by a factor expfi,Y/h), that is, with an average momentuyp

= (2Mfiwy)Y2. In practice, B and C are two wave packets N

oscillating in theY direction with the same amplitude and H,, = ZyaYae_ﬁl(x_XS)ze_ﬁZYaz

different phases. The trajectories of their centers inXhe S

plane differ as to the direction of the approach to, and the

minimum distance from, the conical intersection. In all three All the parameters are the same as before, inclulling K =

cases, A, B and C, however, the initial wave packet has the 0.09 au, with the addition df, = 0.10 au and&K3 = 0.1125 au.

same total energy. The reduced massé4, for the Y, coordinates are 10 000, 9000,
We have run QM, VM, and TSH simulations. In case A, and 8000 au, respectively. These values were chosen so as to

the VM-LZ approximation is also viable. In the full QM and obtain slightly different vibrational frequencies{ = 658, 732,

in the VM treatments the initial conditions B and C are specified and 823 cm?, respectively) for the coupling modes, without

by the corresponding superposition|dfvstates. In the TSH altering the widthsAY, = (2Mqw,)~Y2 which appear in the
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Figure 9. Transition probability from the upper to the lower adiabatic
surface P, for the 3D model with two equal couplings (3D-&),=

2 4
coupling strength, A;

2.3 4
coupling strength, A\;

Figure 11. Transition probability from the upper to the lower adiabatic
surface P, for the 4D models with three equal couplings= 1, =

Aa. As (4D-e), and with three unequal couplings= 44, = 443 (4D-u).
14 T T T T T Generally speaking, summing up more couplings increases
the overall effect, in the sense that tRg-i(11) functions are
0.95 . displaced toward lowek values. This effect increases in the
' VM order 3D-u< 4D-u < 3D-e < 4D-e. A better analysis of these
n . . . ar . . .
0.9 fi T A findings can be done by identifying two special coordinates for
. it /*’ 1 each conical intersectioft:one coincides with the gradient of
= 0.85 _'l,.‘ /'"\// ] H11—Hoo; the other one with that dff1o. In our models, the
§ v/ AN former coordinate is alwayX; the latter (the coupling coordi-
S %/ AR nate) is
? 08} ‘\"\— ¢’, \\ ]
}% ““* / \\ N N
) RNV TSH o Y= (ny)‘”z( Zyava) (18)
= e S -+.—~\—\< ............... d & &
0.7 N - . ) . ) . .
\ Starting from an intersection point, a displacement in any
\ directionZ, orthogonal to these two coordinates, leavesHhe
065 1 N\ T matrix unchanged, except for a common shift of the diagonal
\VM-L.Z : )
' . . LN maitrix elgments. Therefore,_tfkqoordlnates do not couple .
06 0 6 the diabatic states, nor the adiabatic ones. We shall characterize

2. 3 4 o i . .
coupling strength, A, a conical intersection by the coupling factor related with'Yhe

Figure 10. Transition probability from the upper to the lower adiabatic ~coordinate:
surface P, for the 3D model with two unequal couplings (3D-4),
= 4/12. 8H12 N
Ye=—= (ny)”z (19)

definition of the A parameter. The QM, VM, and VM-LZ IYe o=
treatments are as described in section 2, except that the wave ) ) ] o
function expansions (4) and (8) are made on two- or three-mode The width of the wave packet in thé dimension is
vibrational bases, therefore with two or three quantum numbers N N
Va. _ 21 2 2\1/2

The vy, factors are varied in order to investigate different AYe (QZ\VQ) (QZ\V& AY) (20)
coupling schemes. In the 3D-e model, we have two coupling
coordinates withy; = 2. In the 3D-u model, the two couplings
are different,y; = 2y,. Similarly, the 4D-e and 4D-u models
are characterized by three couplings, respectiygly= y, =
vz andyi = 2y; = 2ys. The results of the simulations, all -
expressed as functions af = 27AY2y.2/XF,, are shown in 1= 2TAY
Figures 9-11. For the 3D-e model we have also run full QM e XF
calculations and found that the VM results are again very good
approximations of the exact ones. Therefore, for the other cases)n Figure 12 we show th®VM probabilities for all the 2D,
only the VM results are given. Notice that, on the contrary, 3D, and 4D models, as functions &f All the curves follow
the Landat-Zener approximate solution breaks down in the the same trend, and the gquantitative agreement is good up to
3D and 4D cases, because of the presence of very close lyingrather strong couplings. This means that the wave packet
avoided crossings. The TSH results show the same trends aslynamics in the presence of a multidimensional conical
in the 2D case. intersection can be analyzed in terms of a single coupling

(that is, because with our choice of the parameterda#}l are
equal,AY; = AY,). Then, an effective coupling strength can
be defined as

(21)

X
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Figure 12. Transition probability from the upper to the lower adiabatic surfége,, versus the effective coupling parametgr VM results for
all the 2D, 3D, and 4D models.
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5. Conclusions
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